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ABSTRACT 

The Kamae and Mendes France version of the Van der Corput equidistribu- 
tion theorem is extended further to summability methods different from 
Ces~ro summability and groups different from the circle. The theorem is 
shown to follow naturally from consideration of Banaeh limits and spectral 
theory. 

Introduct ion 

Kamae and Mendes France [10] call a set of  integers H c N a Van der 

Corput set iff whenever {x,} is a sequence in T = [0, 1) for which the 

differences {xn +h -- Xn }n are equidistributed modulo 1 for all h E H,  necessar- 

ily {x, } is equidistributed itself. This notion is motivated by Van der Corput's 

difference theorem, which states, in effect, that N is a Van der Corput (VDC) 

set. In this paper we examine collections of  sets of  integers related to the 

collection of  VDC sets, using Banach limits as our main tool. In Section 1 we 

characterize FC+-sets - -  sets of  integers forcing continuity of  positive mea- 

sures. In Section 2 we summarize some relevant results from the theory of 

summability methods. 

In Section 3 we extend the result of  Kamae and Mendes France that any 

FC+-set is a VDC set, to other summability methods. In Section 4 we give two 

quantitative versions of  the Van der Corput theorem, following the fundamen- 

tal work of  Ruzsa (see Ruzsa [18], [ 19]). 

We also consider VDC sets with respect to compact groups different from T. 
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1. Sets of integers forcing continuity of positive measures 

DEFINITION. Let T be the circle, which we identify with [0, 1). Denote by 
P(T) the set of probability measures on T. A set H of positive integers will be 
called an FC+-set if for any # E P(T) 

where 
(for all h E H ,  ~(h) = 0)=*p(0} = 0 

~0 
1 

~(h) = exp( - 2rtihO)dlt(O). 

In the sequel we will show that this definition, due to Y. Katznelson, unifies 
results of Furstenberg [8] and Kamae and Mendes France [10]. 

EXAMPLE I. For J C N  let J - J = { m - n  Im, nEJ ,  m > n }  be the 
(positive) difference set o f J .  I f J  is infinite, J -  J is an FC+-set (Kamae and 
Mendes France [ 10]). 

In fact, the following stronger statement is easily proved (Bertrand-Mathis 

[1]): 
Vg E P(T), g{O) < lim sup Re(~(h)}.  

h~oo 
h ~ J - d  

EXAMPLE II. Assume H C N has the following property: For each k E N, 
the set H n kN contains an infinite sequence {b} k) [j >= 1) such that for all 
irrational a, the sequence {b: k). a [j >_- 1 } is equidistributed modulo 1. Then H 
is an FC+-set. 

This was proved by Kamae and Mendes France [ 10] and, in a stronger form, 
by Bertrand-Mathis [ 1 ]. 

For any polynomial P : Z--* Z which does not vanish identically and has a 
root modulo k for each k E N, the set P(Z) n N of positive values of P satisfies 
the property of Example II and is therefore an FC+-set. 

The following theorem characterizes FC+-sets using isometries. 

THEOREM 1.1. Let H C N. The following conditions are equivalent: 
(i) H is an FC+-set. 
(ii) For any isometry U of an inner product space fl, if  a vector to E f l  satisfies 

Uhto.l_to for all h EH, then to_LKer(U - I). 

Before proving the theorem, we note that its conclusion can be strengthened: 

COROLLARY 1.2. Let H C N be an FC+-set and let U be an isometry oJ 
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an inner product space fL I f  09 Ell  satisfies uhto_Lto for all h ~H,  then 
to±Ker(U - (I) for all ~ EC such that 1(I = 1. 

PROOF OF COROLLARY 1.2. Apply Theorem 1.1 to the isometry ~U o f fL  [] 

We shall prove a quantitative version of  Theorem 1.1. Following Ruzsa [ 1 8], 

define for any H c N: 

2(H) = sup(# (0}  I/z ~P(T) ,  ft(H) = (0}} 

where ft(H) = {/~(h) I h Note that H C N is an FC+-set iff 2(H) = 0. 

Also denote: 

21(H) = sup( I (to, z)12 1 to E~,  V h E H  Uhto±to, z ~ K e r ( U  - I), 

II co II -- II z II = 1} 

where fl  runs over all inner product spaces and U over all isometrics of  ft. 

Notice that for H c N, 2~(H) = 0 iff H satisfies statement (ii) in Theorem 

1.1. The following theorem deafly extends Theorem 1. l: 

THEOREM 1.3. For all H C N, 2(H) = 21(H). 

PROOF. (a) 2 _--< 21. Let # ~P(T)  satisfy/~(H) = 0. We define fl  = L2(/~) and 

for e a c h f ~  D, Uf(O) = e-~i°f(O). U is an isometry of  fl  and the function 

~ [ u ( 0 } ] - " ~ ,  o = o 
z(0)  

(0, 0 ÷ 0  

satisfies z E Ker(U - I), II z II = 1. 
Letting t o ~ l  be a constant, we have V h E H  (Uhto, to)=/~(h)=0 and 

therefore 

f z(O)dlz(O) 2 2,>-_ I(to, z ) l  2 =  = u { 0 } .  

(b) 41 < 4. Let fl  be an inner product space, U: f l ~ f l  an isometry, 

z E Ker(U - I) and to E • so that 

Vh ~H,  uhtolto and I[ to II = II z II = 1. 

We must show that I(to, z)12 < 2 ( H ) .  Without loss of  generality we can 

assume that ~ is a Hilbert space. 
Let #o~ be the spectral measure corresponding to to: 

Vn>=0, /~o(n) = (U"to, to ). 
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/z~o EP(T) since/~(0) = (to, to) = 1. 

Let M = Ker(U - I) and write to = ~o~ + oh with o~ ~ M, o322M. 
M, M ~ are U-invariant spaces, so 

V h >-_ O, ( Uno.), O) ) f ( un(I)l, O)l) "~- ( Un(.l)2, (.02). 

Therefore #o~ =/z~, +/z~. 

Now #o , (n)=  <U~o~,, o~,> = II O)1 II ~ s o / ~ ,  = II oJ, 112.60, where •0 is the 
point mass at 0./~o~(H) = 0 by the definition of/~,o. Hence 

;~ >_-a~{0} ->_ II o)111~>= I<co~, z>l 2 =  I<to, z ) l  2. [] 

REMARK. # ~/Z{0} is an upper semicontinuous function on P(T), so the 

weak-* compactness of P(T) implies 

2(H) = max{/z{0} [/z ~P(T),/~(H) = 0}. 

Theorem 1.3 guarantees that in the definition of  A~(H) as well, the supre- 

mum is a maximum. We apply Theorem 1.1 to measure preserving systems. 

DEFINITION. A set H C N isa  Poincar~ set if for every measure preserving 

transformation T of  a probability space (X, fl, o ) and for all A c X satisfying 

o(,4) > 0, there exists h ~ H  such that o(T-hA f3 A) > O. 
Furstenberg [7], [8] defined Poincar~ sets and proved that if  a nonzero 

polynomial P satisfies 0 E P(Z) c Z, the set N N P(Z) is a Poincar~ set. This is a 
consequence of Example II above and the following proposition, also proved 
by Bertrand-Mathis [ 1 ]: 

PROPOSITION 1.4. I f  H is an FC+-set then H is a Poincar~ set. 

PROOF. A measure preserving transformation T of  a probability space 

(X, fl, u) induces an isometry U ofL2(X,  fl, o)defined by U ( f ) ( x ) =  f(T(x)) .  
IfA C Xhas a positive measure, ( 14, Ix) = o.4 > 0 and since l x E K e r ( U  - I), 

Theorem 1.1 implies that for some h E H, 0 ÷ ( U h 14, 14 ) = o(T-hA N A ). [] 

2. Summability methods and Banach limits 

In this section we summarize some results from the theory of summability 

that will be needed in the sequel. 

DEFINITIONS. Let l ~° denote the space of  bounded complex sequences 

{Yn }~o , with the supremum norm. 

I. A summability method is a continuous linear functional ¢ defined on a 
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subspace Dom(¢) of l ~. For instance, Ces?tro summability is the functional ¢ 

defined by 
1 

~(y)--  lim Y, yn, 
N~Qv N n- -  1 

and Abel summability is defined by 

¥(y)  --- lim (1 - r) ~ y,r #-I 
r ~ l  n - I  
r < l  

whenever the limits exist. We shall be concerned only with regular summ- 
ability methods, i.e., methods extending ordinary convergence. 

II. Let A = (amn) be an infinite matrix satisfying the Toeplitz conditions 

sup ~ l a m n l < o o ,  limY, a m , = l ,  l i m a , , , = 0 .  
i l l  / I = 1  r t l  ~ O0 / I  ? r / ~  00  

A induces a regular method 0A, defined by 

0A(Y) = lim 7, a,,.Yn = lim(Ay) 
f f l ~ O 0  ?1 

whenever the limit exists. 
III. The matrix A is called positive strongly regular if, in addition to the 

Toeplitz conditions, it satisfies 

amn > O, lim ~ I a,nn -- am.n + I [ = O, 
rtl n 

IV. The sequence {Yn} is almost convergent to the value ~ if 

1 N 

lim 7;, ~ Yk+.-- 

holds uniformly in k = 1, 2 , . . . .  
V. A Banach limit is a positive, normed, shift invariant linear functional 

defined on all 1 ~. 

LORENTZ'S THEOREM. For y ~ l ~, the following are equivalent: 
(i) y is almost convergent to zero. 

(ii) Every Banach limit L satisfies L (y )  = O. 
(iii) Every positive strongly regular matrix A satisfies lim(Ay) = 0. 

For proof, see Lorentz [14] or Petersen [ 17]. 
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Lorentz's theorem is in line with our theme of  studying collections of  
Banach limits. So is the following theorem. 

THEOREM 2.1. Let (~ be either Abel summability or a matrix method 0,4 
corresponding to a positive, strongly regular matrix A,  and let y E l  ~. I f  
L (y )  = O for all Banach limits L extending (~, then ~ y )  = O. 

PROOF. We prove the theorem for Abel summability; the proof  for matrix 
methods is similar. Assume ~ ( y ) ~  O. Then for some increasing sequence 
rm --" l, we have 

0 ÷ ~ = lim (1 - rm) ~ y,r~,- 
~rl ~ o0 / i s  1 

Define linear functionals ~m on 1 ~ by 

~m(X) = (1 rm)  ~, n - I  - -  Xnrm . 
n - - I  

Let L be a weak star cluster point of the sequence {~m }g-  I- L is a Banach limit 
extending ~ for which L(y)  = ~ ~ 0 - -  a contradiction. [] 

We shall need a quantitative version of  Lorentz's theorem. Fix y E l ~. 

A(N) = sup ,~-1Yk+n 
k _ > l  

is a subadditive function of N so 

A(N) 
p~(y) = lim 

exists and equals infN(A(N)/N). Also define 

1 
P2(Y) = lim~_®sup /V---" nY'l y" " 

THEOREM 2.2. For all y E l ~ 
(a) P1(Y) -- sup{L(y) I L is a Banach limit}, 
(b) P2(Y) <-- sup{L(y) [L is a Banach limit extending Ces8ro }. 

PROOF. (a) Let U denote the left shift on 1 ®. For any Banach limit L, 
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V N ~ N  IL(y)I = L U = L Y. < 
n 1 n =  k = l  N ' 

Therefore L(y) < p~(y). 
To show the reverse, choose for each N an integer k(N) such that 

A ( N ) -  Y. Yk(N)+n < 1 
n 1 

and define a linear functional aN on 1% 

1 N 

OlN(X)  = S n ~ l  Xk(N)+n" 

Ol oo Any weak star cluster point L of the sequence { ~}~=~ is a Banach limit 
satisfying 

N Yk(N)+n L(y)  = lim ~ = p~(y) 
N~Qo n = l 

as desired. [] 

Part (b) is easy to show directly; we shall derive it from a stronger 
proposition. 

THEOREM 2.3. Let y E l  ® be a sequence of  real numbers. Define 

P3(Y) ---- sup{L(y)  [L is a Banach limit extending Ces~ro }, 

P4(Y) = infsup {Yn + ton}, 
co n > l  

where to ranges over all real bounded sequences which are Cesdro summable 
to O. 

Finally, denote 
N(I  + e )  

Ps(Y) = sup lim sup (eN)- l y .  
e > 0  N ~ o o  n - N  

Yl~ ° 

Then 

( I )  P3=P4----Ps. 

(II) The supremum in the definition of  p3 is actually a maximum. The 

infimum in the definition of  p4 is a minimum, and sup~>o in the definition of  ps 
can be replaced by lim~-o,~>0. 

(III) For any complex sequence z E 1% 
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sup{ IL(z) ] : L is a Banach limit extending Cesdro } 

J N(I +e) Zn 
= lim lim sup (eN)-~ Y, . 

e~O N~ N 
e > 0  

PROOF OF I. The case P3 </ '4  is immediate. 

For P4 < Ps, it suffices to show Ps(Y) < 0=~ P4(Y) < 0. We assume Ps(Y) < O. 
Define an increasing sequence {Nk} by 

N l = 1, N k + ~ = min M > y,, < 0 . 
Nk+l 

The assumption Ps(Y) < 0 implies that 

lim Nk+l _ 1. 
k ~ oo N k  

Define a real sequence to E l v by 

N~+~ 

Nk < n < N k + l ~ t o n = ( N k + l - - N k )  -l 2 Yi--Y, .  
N t + l  

It is easily seen that 

to.~0 
and therefore 

V4(Y) < sup {y, + to,} _-< 0. 
n 

Consider the case P5 --< P3. For fixed e > 0, the proof that 

N(I +e) 

lim sup ( e N ) - I  ~ Yn < P3(Y) 
N--oo N 

is identical to the proof of  Theorem 2.2. 

The proofs of  (II) and (III) follow from examining the proof of  (I). [] 

The functional Ps is related to the notion of"Polya maximum density". 

3. Equidistribution of sequences with respect to summability methods 

DEFINITIONS. ( i)  Let G be a compact group, ~ a summahility method. A 

sequence {x, } c G is called ~equidistributed if 
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/ -  
(.) V f E  C(G), ~{f(x.)}~=, = J ~  fd~ 

where/~ denotes Haar measure. The Weyl criterion applies: 
It is sufficient to check (.) f o r f a  character of G. 
(ii) The sequence {xn } c G is called well distributed if it is equidistributed 

with respect to almost convergence, and equidistributed if  it is equidistributed 
with respect to Ces~ro summability. 

(iii) Let • denote the following collection of summabili ty methods: 

= {~,4 I A a positive strongly regular matrix} U {Abel summability} 

U {almost convergence}. 

Note that • includes Cesaro summability. 

Lorentz's theorem and Theorem 2.1 imply the following 

PROPOSmON 3.1. Let G be a compact group, and ~Ecp. .4 sequence 
{xn } c G is ~equidistributed iff it is L-equidistributed for every Banach limit L 
extending ~. 

The inner product space corresponding to a Banach limit L 

Define a bilinear form ( , ) on l ® by 

(w, v) = L{wn~}~_I. 

We denote JL -- {v E l ~° [ L { [ Vn [2}n = 0}; note that JL C Ker L.  The quotient 
space K~L = l®/JL is an inner product  space. 

Douglas [6] suggests an alternative approach to ilL: The Stone-(~ech 
compactification of  the positive integers is denoted fiN; 1 ~ is isometrically 
isomorphic to C(flN), so L can be viewed as a positive linear functional on 
C(flN). The Riesz representation theorem attaches a measure oL to this 
functional. The Hilbert space L2(oL) is a completion of  ilL. 

We shall not use this approach in the sequel. 
Recall that we denoted the shift of/® by U. Jr  is a U-invariant subspace so U 

acts naturally on f~L and is an isometry there. 

A Banach-limit Van der Corput Theorem 

LEMMA 3.2. Let L be a Banach limit, y E l  °° and H c N be an FC+-set. IJ 
Vh ~ H ,  L {y,,+~.p,,}~_~ = 0 then also L(y)  = O. 
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PROOF. Using the space f~L and the isometry Uinduced by the shift, we can 
write the hypothesis 

V h e H ,  (Uhy, y)  =0.  

The characterization of FC+-sets (Theorem 1.1) gives y_kKer(U - I ) .  The 
constant sequence 1 = (1, 1 . . . .  ) is in the kernel of U - I, and thus 

0 =  ( y , l )  =L(y) .  [] 

THEOREM 3.3. Let G be a compact Abelian group, {x, } c G, H c N an 
FC+-set and 0 one of  the following summability methods: 

(a) a Banach limit, 
(b) almost convergence, 
(c) a positive strongly regular summability matrix, 
(d) Abel summability. 

Iffor each h E H  the sequence {x, +h - x, }, is O-equidistributed, then {x, } is ¢- 
equidistributed. 

PROOF. (a) First assume ~ = L is a Banach limit. We must show that every 
nontrivial character Z of G satisfies 

= f Z = O. 

Lemma 3.2 implies the desired conclusion. 
Parts (b), (c), (d) follow from (a) and Proposition 3.1. [] 

Theorem 3.3 for Ceshro summability was proved by Kamae and Mendes 
France [10]. Reference to other summability methods (but not to FC ÷- 
sets) can be found in Kuipers and Niederreiter [13], Cigler [4] and 
Kemperman [ 12]. 

Strengthening the conclusion 

Let L be a Banach limit. We denote by AP(L) the subspace o f ~  L composed 
of L-almost periodic sequences which we define by 

AP(L) is the dosed span in f~L of the collection of characters of the semi- 
group N. 
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LEMMA 3.4. 

satisfying 

Let L be a Banach limit, H an FC+-set and y E l  °° a sequence 

Vh ~ H ,  L{Yn+hY~n}n~=l  = O. 

Then y±AP(L)  in f~L. 

PROOF. It suffices to check that y±{ (n} when I(I  = 1. This is an imme- 

diate consequence of Corollary 1.2. [] 

DEFINITIONS. 

AP---~ {co ~ I  * ] co + JL CAP(L)  for all Banach limits L}, 

AP(Ces~ro)---= {co E l  ~ ]co +d~ EAP(L)  for all Banach limits L extending 
Cesaro}, 

EXAMPLE. Let f :  T d---, R be Riemann integrable, a~ , . . . ,  adE[O, 1). The 

sequence z, = f(exp(2rtin al) . . . . .  exp(2rtin ad)) satisfies z E AP. 

Preliminaries 
Let G be a compact Abelian group, {x,} c G, H C N an FC+-set, and 

{m,}~>=~ c N. Denote z (k )= [{n Ira, = k} I. We require that the indicator 
sequence z be bounded,  but note that repetitions in {m,} are allowed. 

Part (ii) of  the following corollary appears in Daboussi and Mendes France 

[51. 

COROLLARY 3.5. Using the above notation: 

(i) I f  sup, I m,  - m,_  l I < ~ ,  z ~ AP, and for each h E H the sequence 
{x,+h - x , } ,  is well distributed in G, then {x,.} is also well distributed. 

(ii) I f  sup,(m./n) < oo, z EAP(Ces~ro), and for each h E H  the sequence 
{x. +h - x, }. is equidistributed, then {xm. } is equidistributed. 

PROOF. We prove only (ii) - -  the proof  of(i) is similar. For each nontrivial 
character X of G, we use Lemma 3.4 for the sequences y = X(x.) and z 
AP(L), where L extends Ces~ro. We find that 

1 n 
l i m -  Y~ ;~(x,,k)= 0 
.-~o m.  k = I 

and since sup(m,/n) < oo, also 

lim I ~ /(xmk)__O. [] 
n~°° n k - I  
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EXAMPLE. Let ct, fl > 0 be irrational. In Kuipers and Niederreiter [13], 
Chap. 5, Theorem 1.8 it is shown that the sequence (Ln aJfl } ~°_l is equidistri- 
buted modulo l iff l, a, aft are linearly independent over the rationals. (A nice 
proof of this fact, using ergodic theory, was given by I. Oren.) However, 
Corollary 3.5 implies that for all fl > 0 irrational and a > 0, the sequence 
(In a~Efl } ~= i is equidistributed mod 1. 

Cigler considers equidistributed sequences of measures. 

DEFINITIONS. Let G be a compact Abelian group, and let ~ be a summabi- 
lity method. 

(I) A sequence {ak }~o of probability measures on G is ~-equidistributed if 

for every f E  C(G) 

= fdg 
k - I  

where/~ is Haar measure. 
(II) Given measures v, T on G, define a measure rOT by: 

V f ~  C(G), f o  fd (ooQ= f a  ~ f ( x -  y)do(x)dz(y). 

PROPOSITION 3.6. Let ¢~ be one of the summability methods (a)-(d) appear- 
ing in the statement of Theorem 3.3. I f  {ak} is a sequence of probability 
measures on the compact abelian group G such that (ak+hOak}~-~ is ¢~ 
equidistributed for every h in an FC+-set H C N, then necessarily { ak } is also 
¢-equidistributed. 

PROOF. Analogous to Theorem 3.3, which is the special case of Proposition 
3.6 corresponding to point measures. [] 

4. Van der Corput sets 

Theorem 3.3 motivates the following 

DEFINITION. Let G be a compact Abclian group, ¢ a regular summability 
method. A set H of positive integers is called a VDCset with respect to G, (b if 
for an.y sequence {xn} c G such that {Xn+h --X~}, is ~-equidistributed for all 
h ~ H, necessarily {x~ } is ~-equidistributed. 

I. Z. Ruzsa [ 19] proved that the notions of VDCset, with respect to T, Cesdro 
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and FC+-set are equivalent. In fact he proved a quantitative version of this 
equivalence. Our methods allow us to extend some of his results. 

For H c N and y E l ~ satisfying. 

Yn+hYn ' 0 for all h ~ H ,  
n ~ c ~  

and II y II 1, Ruzsa proves 

then 

THEOREM 4.1. 

(a) I f  

Let H c N and y E l ~ with II Y l[ ~ < 1. 

Ces~tro 
Y,+hY, , 0  foral lhEH, 

(1 +e)N I 
lim,_o lim~_~osup (eAr)-1 ~ y, < ~ .  
e>O 

(b) I f  {Y,+hY',) is almost convergent to O for all h EH, then 

1 u 

N k n 

PROOF. (a) By Theorem 2.3(III) it suffices to show that for any Banach 

limit L extending Ces~ro, I L(y)I < ~ .  
Let U be the shift on f~t and 1 =(1,  I, 1, . . . ) .  The hypotheses Uhy±y 

Vh ~H, 1[ y HaL < l[ Y 1[® < 1 imply, using Theorem 1.3, that 

IL(Y)[ 2= I(Y, 1) 12 <2~(H) = 2(H) - 

(b) Follows similarly from Theorem 2.2. [] 

REMARK. In Theorem 4.1, the boundedness assumption on y can be 

weakened (as done by Ruzsa in [19]). 

Van der Corput sets with respect to other groups 

QUESTION. For which compact Abelian groups G are all VDC set with 
respect to G, Cesaro necessarily FC+-sets? (The reverse implication always 
holds, by Theorem 3.3.) 
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We cannot presently answer this question, but an extension ofRuzsa's  resull 
in this direction is given. 

THEOREM 4.2. Let Go be a compact Abelian metrizable group. I f  G is a 

direct sum Go • T then any VDC set with respect to G, Cesgtro is an FC+-set. 

We shall need a lemma. 

LEMMA 4.3. Let Go be an Abelian metrizable compact group, and let 

G = G0 @ T. 
(a) Let {t.}~=~ c T, {Y,}~=t c Go. I f { y .  + t.} is equidistributed in G, then 

{ t. } is equidistributed in T. 
(b) Let {0.} be an equidistributed sequence modulo 1. For almost all 

sequences {x. } c Go with respect to Haar measure on G~, {x. + O. } is equidis- 
tributed in G. Moreover, for almost all { x ,  } E G~, { x ,  + h - x ,  + O, }, is equidis- 
tributed in G for all h ~ N. 

PROOF. (a) is immediate. 
(b) The dual group of G is countable, so it suffices to show that for each 

nontrivial character Z of G, 

1 N 
lim Y~ Z(x, + 0.) = 0 

N N . = I  
for almost all {x~ } E G~. 

If  x(G0 ~9 {0}) = { 1 } this follows from the hypothesis on {0~ }; otherwise, it 
follows from the strong law of large numbers. The sequence x. +h - x.  + 0. is 
dealt with similarly. [] 

PROOF OF THEOREM 4.2. Let H be a VDC set with respect to G, Cesttro. We 
show that H is a VDC set with respect to T, Cesaro. Let {t, } c T be such that 
{t, + h - t, }, is equidistributed for all h 6 H. 

By the lemma, for almost all {x, } 6 Go N and all h E H, {x, + h -- X, + t, +h -- t, }, 
is equidistributed in G, so {x, + t, } is equidistributed by hypothesis. 

By the lemma {t. } itself is equidistributed. [] 

For further related results, see Bourgain [2] and Peres [ 16]. 
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